isótopos

Sobre isótopos, isóbaros e isótonos dos elementos químicos da tabela periódica.

0

avião militar tipo b29
Por que alguém visitaria uma cidade fantasma radioativa ou os remanescentes de um reator nuclear? As razões são surpreendentemente variadas, e as impressões das pessoas que viajaram para esses lugares distantes oferecem um vislumbre de nossa compreensão coletiva da era nuclear.

Os turistas estão quase todos sorrindo. Alguns envolvem os braços em torno de companheiros ou crianças pequenas; outros estavam orgulhosos e dão um sinal de positivo. Os membros de uma orquestra posam engomados com gravatas azuis combinando; uma dúzia de aposentados de meias brancas sorriem para a câmera. A maioria posa em frente a uma parede de cinco andares de tubos de alumínio cuidadosamente empilhados. Um comentário no Facebook diz que se parece com o maior rack de vinhos do mundo. Outro post pergunta a um amigo: “O que é isso, Wall Street?”

A cena poderia estar acontecendo em qualquer lugar nos Estados Unidos ou no mundo, na verdade. Você poderia trocar em um cenário da Torre Eiffel ou do Magic Kingdom sem mudar muita coisa. Mas os turistas nessas fotos escolheram um destino muito incomum. É aqui que começou a era nuclear, alguns minutos antes da meia-noite de 26 de setembro de 1944. É o Reator Hanford B, onde homens e mulheres do Projeto Manhattan trabalharam em segredo para produzir o plutônio usado nas primeiras armas atômicas do mundo.

Hoje, a Reserva Nuclear Hanford, situada ao longo do rio Columbia, em uma área remota do sul do estado de Washington, faz parte do sistema de parques nacionais do país. Os prédios envelhecidos deste antigo complexo foram descontaminados e carimbados com o icônico logo da flecha do Serviço Nacional de Parques. O museu do parque permite que os jovens posem com manequins do tamanho de crianças do físico nuclear Enrico Fermi, a primeira pessoa a demonstrar uma reação em cadeia nuclear autossustentável, é Leona Woods, que ajudou a supervisionar a construção dos reatores de Hanford. Mais adiante, os turistas podem sentar-se na estação de controle, onde os engenheiros monitoraram a transmutação de urânio em plutônio; agora, esses instrumentos são acessórios para fotos bobas de adolescentes de aparência arteira, com as mãos postas sobre botões de aparência sinistra.

Trabalhadores de reatores aposentados guiam os visitantes através de salas decoradas com relógios de parede enferrujados e cartazes de propaganda da época da Segunda Guerra Mundial. Um retrata uma menina pequena segurando uma fotografia de seu pai em uniforme militar, que diz: “O que você está fazendo pode salvar a vida do meu pai.” Outra apresenta um trabalhador com capacete de segurança dando adeus às suas filhas pela manhã; a legenda diz: “Proteção para todos: não fale. Silêncio significa segurança.”

Os trabalhadores aposentados, muitos na faixa dos 70 ou 80 anos, atualmente estão livres para falar. Dentro de seus antigos escritórios e salas de descanso, eles dedicam tempo para discutir o trabalho que fizeram e explicar a ciência de uma reação nuclear.

Ainda assim, a Reserva Nuclear Hanford é um trabalho em andamento. Mesmo depois de décadas, a limpeza do complexo continua. Muitos edifícios ainda estão sendo demolidos, e vazamentos de radiação periodicamente forçam os trabalhadores a se abrigar, como aconteceu em maio de 2017, quando um túnel usado para armazenar resíduos radioativos entrou em colapso. (Em resposta, a Administração Federal de Aviação temporariamente restringiu os vôos sobre a área.) Materiais radioativos persistem no solo e nas águas subterrâneas, e os restos de resíduos do reator escorrem dos tanques subterrâneos com vazamentos. Devido a esses riscos, as famílias com crianças pequenas devem assinar um formulário de liberação reconhecendo tais riscos antes de entrar no local.

historiador apresenta equipamento
O historiador Burt Pierard se dirige a um grupo de turistas no Reator Hanford B, 2008. O reator fez o plutônio para o Teste Trinity e a bomba que destruiu Nagasaki. (Fonte: AP Photo / Ted S. Warren)

Cerca de 80.000 pessoas visitaram o parque desde que abriu para excursões em 2009, de acordo com o Departamento de Energia. Os turistas levaram cerca de US$ 2 milhões por ano para a cidade vizinha de Richland, diz Colleen French, gerente de programas do parque em Hanford. Desde o início, o turismo tem sido uma força motriz por trás da conversão da ruína radioativa em museu. A Associação do Museu do Reator B descreve-o como um “local educacional único” e “uma pedra angular do Turismo Patrimonial no Noroeste do Pacífico”. Mas por que alguém escolheria uma usina nuclear antiga para férias em família?

“Há um certo tipo de fascinação macabra com esses lugares”, diz Linda Richards, uma historiadora da ciência da Universidade Estadual do Oregon que estudou o museu de Hanford. “Eu acho que isso também se encaixa com esse tipo de senso despreocupado: é retrô, é moderno, não é mais perigoso. É corriqueiro.”

Os visitantes do museu descrevem suas experiências em termos geralmente positivos, usando palavras como “memorável”, “histórico” e “revelador”. Alguns dizem que acham a experiência sóbria e, no entanto, iluminadora. “Mórbida, parecia um pouco como parar em uma catedral”, Heather Young, que visitou no outono de 2016, escreveu no site de viagens Trip-Advisor. Outro visitante sentiu “completa admiração”.

Viajantes curiosos estão tendo o mesmo tipo de experiências em todo o mundo. Instantâneos de visitas a outros lugares como o Projeto Manhattan e até mesmo à zona de exclusão de Chernobyl, na Ucrânia – o local do desastroso derretimento do reator em 1986 – mostram pessoas alegremente manuseando artefatos e sorrindo com placas comemorativas. Através do turismo, parece, a história atômica tornou-se uma brincadeira e a era nuclear tornou-se entretenimento.

A parede de bastões no reator Hanford B, que agora atrai turistas, já foi um lugar de criação, onde o urânio foi dilacerado e refeito como plutônio.

Esse processo começou com um feixe de nêutrons que fluía no núcleo de grafite do reator, o que reduziu a velocidade dos nêutrons. Seu ritmo lento permitiu que o núcleo de um átomo de urânio-238 absorvesse um nêutron, momentaneamente formando urânio-239 antes que a partícula extra separasse o núcleo. O átomo dividido expelia calor, raios gama e mais três nêutrons. Esses nêutrons extras ricochetearam também no grafite, que reduzia a velocidade para que pudessem também ser absorvidos e dividir mais átomos. Tudo isso acontecia em menos de um instante, provocando uma reação em cadeia.

A resultante inundação de nêutrons se juntou a inúmeros outros átomos. Após cerca de 23 minutos, metade do urânio-239 havia se transformado em neptúnio, outro elemento instável. Cerca de dois dias depois, metade do neptúnio havia se transformado em alguns gramas de plutônio, que foi refinado usando ácido clorídrico e depois purificado em plutônio metálico. O plutônio é muito estável e persistirá por centenas de milhares de anos se ficar intocado. Mas também pode ser dividido. O elemento batizado como infernal pode se tornar a morte, um destruidor de mundos.

equipamentos antigos
Painéis de instrumentos e outros detalhes do Marco Histórico Nacional do Reator Hanford B, parte do Parque Histórico Nacional do Projeto Manhattan. (Fonte: Departamento de Energia dos EUA / Whit Vogel)

Dentro do Reator Hanford B, a transmutação se desdobrou silenciosamente, lentamente. Não haviam partes móveis, exceto pelo movimento dos átomos através do vazio. O único som era a agitação do rio Columbia, cujas águas eram desviadas para o reator para resfriá-lo, a uma taxa de 284000 litros por minuto. Engenheiros e físicos monitoraram o reator em estações próximas e controlaram o processo que iniciou a reação nuclear em cadeia. Mas uma vez que a reação começou, ela foi auto-sustentável, exigindo apenas a adição de combustível e, quando gasto, sua remoção.

Em 26 de dezembro de 1944, trabalhadores contratados pela DuPont processaram o primeiro pequeno lote de nitrato de plutônio no local de Hanford. O coronel Franklin Matthias, oficial encarregado de Hanford, levou pessoalmente o plutônio purificado na primeira parte de sua jornada ao Laboratório Nacional Los Alamos, no Novo México. Em 16 de julho de 1945, os cientistas de Los Alamos detonaram uma bomba com este plutônio em seu núcleo. O bem-sucedido teste de Trinity foi a primeira explosão nuclear do mundo e a pedra angular do Projeto Manhattan.

Enquanto isso, o reator Hanford B continuava produzindo plutônio. Durante toda a primavera e o verão de 1945, mais pastilhas de plutônio foram enviadas de Washington para a Base Aérea de Kirtland, ao sul de Albuquerque. De lá, em 28 de julho, um núcleo de plutônio feito em Hanford foi levado à Tinian, uma das Ilhas Marianas do Norte, e montado em uma bomba chamada Fat Man, que foi carregada no Boeing B-29 Superfortress Bockscar .

O Bockscar decolou às 3h47min da manhã de 9 de agosto de 1945 e seguiu seu caminho pelo Japão. O país ainda estava se recuperando. Três dias antes, o Enola Gay havia lançado uma bomba semelhante, mas uma feita de urânio, sobre Hiroshima; a bomba, chamada Little Boy, matou cerca de 66.000 pessoas. Às 11h02, hora local, 9 de agosto, o bombardeiro de Bockscar jogou Fat Man em um buraco nas nuvens e despencou em direção à cidade de Nagasaki. Depois de uma queda livre de 43 segundos, uma carga dentro da bomba detonou, iniciando uma série de ondas de choque que esmagaram o núcleo de plutônio. Isso liberou uma fonte de nêutrons, que começou a dividir os átomos de plutônio e a liberar mais nêutrons da mesma maneira que a reação que produziu o plutônio anteriormente. Átomos se separaram. O calor e a radiação liberados por esses átomos divididos eram equivalentes a 21 quilotons de TNT.

Estima-se que 40.000 japoneses morreram instantaneamente e pelo menos outros 40.000 sucumbiriam aos efeitos imediatos e de longo prazo na saúde. As bombas atômicas são geralmente ditas terem acabado com a Segunda Guerra Mundial e proclamado uma nova era de guerra e paz.

Depois da guerra, o reator B continuou produzindo plutônio. Ela forneceu a maior parte do material físsil para as dezenas de milhares de bombas nucleares que os Estados Unidos construíram durante a Guerra Fria antes que o reator fosse desativado em fevereiro de 1968 e posteriormente desmontado. De 1969 a 2006, os trabalhadores desmantelaram e removeram mais de 50 edifícios e instalações de serviço, poupando o prédio do reator, a coluna de exaustão e a casa de bombas do rio. Em 2008, os planos de limpeza exigiam sua remoção, mas naquele ano as instalações se tornaram um marco histórico nacional. O presidente Obama a designou como parte do Parque Histórico Nacional do Projeto Manhattan em 2014.

Hanford teve uma vida antes da bomba. Até o governo realocar os moradores, o local incluía duas pequenas cidades agrícolas, Hanford e White Bluffs, bem como uma comunidade indígena que antecedia a colonização branca por séculos. Moradores dessas cidades e da tribo Wanapum receberam 90 dias ou menos para evacuar suas casas para dar lugar ao projeto federal confidencial. A área de 586 milhas quadradas abrangia terras usadas por várias tribos, incluindo Cayuse, Umatila, Walla Walla, Yakama, Colville e Nez Perce, que haviam caçado e pescado na área por pelo menos 10.000 anos. Todos foram removidos e negados o acesso à terra. Hoje, a casca de concreto da Hanford High School é uma das poucas relíquias anteriores ao Projeto Manhattan que permanecem. Don Young, um veterano do exército que visitou Hanford em agosto de 2016, diz que não aprendeu muito sobre essa história no museu, em vez disso viu em um livro.

“Eu esperava uma discussão contextual mais completa do esforço da Segunda Guerra Mundial. Embora o local descreva o deslocamento dos agricultores que estavam na área antes da guerra, os materiais falavam pouco sobre como o local de Hanford foi selecionado – que era próximo à hidroeletricidade, muita água e no meio do nada,” ele diz.

O passeio também não menciona as milhares de pessoas que ficaram doentes com a radiação durante os dias de produção do reator. Alguns visitantes, que aprenderam sobre esses efeitos nocivos ou conhecem a história da região, apontam essas omissões em suas análises nas mídias sociais. “A única desvantagem que notei foi a falta de consciência dos próprios [guias turísticos] da enorme contaminação radioativa que a operação… gerou, seja por meio de resíduos líquidos ou gás”, escreveu um usuário do TripAdvisor que visitou Hanford em abril de 2017.

Como parte da produção e refinação de plutônio, a instalação liberou iodo radioativo no ar, e ele se lançou em pastos onde as vacas pastavam. As crianças que bebiam leite dessas vacas corriam risco de desenvolver doenças da tireoide porque o iodo radioativo se concentra naquela glândula. Em 1990, milhares de residentes, muitos que sofrem de doenças da tireoide, incluindo câncer de tireoide ou hipotireoidismo, processaram empreiteiros federais, de acordo com o Tri-City Herald . O Departamento de Energia indenizou os contratantes, que incluíam DuPont, General Electric e Rockwell International, o que significa que o governo federal era responsável pelos custos legais. Os últimos casos foram resolvidos em outubro de 2015; o Departamento de Energia, que era legalmente obrigado a defender os empreiteiros, pagou mais de US$ 60 milhões em honorários legais e US$ 7 milhões em indenizações.

trabalhadores em hanford
No topo, os trabalhadores da Hanford esperando pelo contracheque no escritório da Western Union, sem data. Embaixo, os soldados soviéticos, conhecidos como liquidadores, ajudam na limpeza após o desastre nuclear de Chernobyl, em maio de 1986. Mais tarde na vida, ambos os grupos de trabalhadores desenvolveram problemas de saúde, especialmente câncer de tireoide e cérebro, relacionados à exposição à radiação. (Fonte: Wikimedia Commons / Departamento de Energia dos EUA; Nações Unidas)

Trisha Pritikin, que cresceu na vizinha Richland, aprecia a conquista científica que o reator representa e diz que vale a pena compartilhar sua história. Ela também é co-fundadora de um grupo de defesa chamado Consequências da Exposição à Radiação (CORE, em inglês). Seu pai era engenheiro na fábrica e morreu de câncer agressivo de tireoide. Sua mãe morreu de uma forma maligna de melanoma, diz Pritikin. Ela teve sua própria tireoide removida no primeiro sinal de sintomas. No mínimo, ela acredita que a história do parque deveria incluir a história dessas pessoas.

Pritikin diz que entende por que a bomba foi construída em meio a temores de uma arma nuclear alemã. “Mas isso não significa que não podemos falar sobre as consequências para a saúde”, diz ela. “Devemos ser capazes de falar sobre ambos.”

O Serviço Nacional de Parques e o Departamento de Energia, que co-administram o local e os passeios, investem mais em retratar o legado da própria tecnologia e dos engenheiros das maravilhas realizadas antes da era dos computadores.

“O que foi mais interessante para mim foram os complicados, mas totalmente artísticos e meticulosos recursos de fiação e controle, incluindo, por exemplo, um mecanismo de desligamento de emergência alimentado por silos de cascalho”, diz o visitante do museu Justin Jaesch, que cresceu no sul Washington e visitou o museu em 2016.

Nem todos os visitantes se sentem assim. “Eu achei o material no local estritamente focado na produção de plutônio, com nenhuma ou apenas uma referência lateral para o que o plutônio foi usado – seja na Segunda Guerra Mundial ou durante, e agora depois, na Guerra Fria”, diz Don Young, o veterano do exército que visitou em agosto de 2016.

Richards diz que o passeio pelo museu omite essa história e a história de contaminação no local. “Como está agora, o local não é um lugar para contemplar os resultados do reator B, mas um lugar onde devemos nos surpreender com a tecnologia”, diz ela.

A missão do National Park Service, “preservar inalterados os recursos naturais e culturais”, significa que a experiência do visitante de Hanford é agnóstica, na melhor das hipóteses, sobre as implicações mais amplas da era nuclear, das mortes imediatas à bomba, aos efeitos sobre a saúde dos trabalhadores e seus trabalhadores, famílias e vizinhos, para a contaminação histórica da terra. Os visitantes não são convidados a contar com isso; em vez disso, eles experimentam a história nuclear como uma excursão divertida, até mesmo como nostalgia.

A preservação intencional e cuidadosamente elaborada – e apresentação – está em contraste gritante com outro local icônico da era nuclear: Chernobyl.

Com um raio de 30 quilômetros, a zona de exclusão de Chernobyl circunda a antiga usina nuclear soviética, nos arredores da cidade ucraniana de Pripyat. O número de mortos do colapso do reator é polêmico, mas pelo menos 28 pessoas morreram na explosão ou de envenenamento por radiação logo após a explosão. Muitos casos de câncer de tiroide e defeitos congênitos na Ucrânia e na vizinha Bielorrússia foram atribuídos ao acidente, que continua sendo o pior desastre nuclear da história.

“Se você ler estudos de grupos como o Greenpeace e outras organizações não-governamentais interessadas no meio ambiente, eles dariam números mais altos. Se você ler os estudos do lobby da energia nuclear, terá números mais baixos ”, diz David Moon, historiador da Universidade de York, no Reino Unido, que percorreu a zona de exclusão.

Além de produzir material físsil, como o plutônio, os reatores nucleares podem ser usados ​​para produzir eletricidade. O calor produzido quando os átomos se separam pode ser capturado para ferver a água, produzindo vapor para movimentar as turbinas.

Ucranianos têm sentimentos mistos sobre os turistas que visitam a área; principalmente, eles não entendem por que alguém iria querer vir.

Os quatro reatores de Chernobyl foram projetados para fazer as duas coisas: produzir plutônio e gerar eletricidade. Os reatores usavam grafite e também refrigeração com água. Mas quando operados em baixa potência, os reatores eram instáveis, resultado de um projeto defeituoso que levou ao acidente devastador. Em 26 de abril de 1986, um surto de energia causou superaquecimento no reator quatro, produzindo uma explosão de vapor que soprou a parte superior do reator e expôs o núcleo radioativo ao ar livre. Um incêndio durou 10 dias, liberando grandes quantidades de partículas radioativas na atmosfera.

Sergii Mirnyi chegou cinco dias depois do desastre. Ele era comandante do pelotão de reconhecimento de radiação de Chernobyl, que veio para avaliar o dano. Agora Mirnyi é escritora residente na Universidade Nacional Kyiv-Mohyla Academy, em Kiev, na Ucrânia, e conselheira de vários grupos de sobreviventes e turismo de Chernobyl.

Ele diz que os efeitos duradouros são mais psicológicos do que físicos e viagens a Chernobyl permitem que os visitantes entendam o que aconteceu. Os sobreviventes se sentiram isolados por seu governo e seu silêncio logo após o acidente. Ao receber turistas e visitar eles mesmo o local, os sobreviventes podem reformular o legado da área, transformando-o em uma história de recuperação e esperança, em vez de perda, diz Mirnyi – assim como a natureza começou a reivindicar a terra.

Moon, no entanto, disse que experimentou um pressentimento ao andar pelos prédios abandonados, mas foi principalmente porque se lembrou do acidente; ele era um estudante de pós-graduação em Leningrado em abril de 1986 e teve que visitar Kiev logo após o colapso.

“Foi uma época terrível. Não sabíamos o que estava acontecendo”, lembra ele. Transmissões de rádio de ondas curtas da mídia ocidental retrataram o desastre como catastrófico, mas as autoridades soviéticas não discutiram detalhes, o que deixou as pessoas com medo e incerteza.

Nos dias que se seguiram ao derretimento, as equipes apressadamente envolveram o reator em uma estrutura de concreto chamada sarcófago, destinada a limitar a liberação adicional de material radioativo. Em novembro de 2016, os trabalhadores cobriram o sarcófago com uma gigantesca concha de aço medindo aproximadamente 257 metros de lado a lado, 108 metros de altura e 150 metros de comprimento, grande o suficiente para cercar a Estátua da Liberdade. A estrutura é projetada para conter a radioatividade do reator por 100 anos.

Ao longo de 1986, as autoridades evacuaram cerca de 115 mil pessoas das áreas mais contaminadas, e outras 220 mil pessoas foram transferidas depois, de acordo com o Comitê Científico da ONU sobre os Efeitos da Radiação Atômica. O governo soviético também cortou cerca de um quilômetro quadrado de floresta de pinheiros que havia sido contaminada e enterrou a madeira.

Mas as árvores voltaram. Pripyat é agora uma floresta de 30 anos de idade, com árvores tomando praças, calçadas, estradas e até mesmo o interior de edifícios, diz Moon. E essa floresta está cheia de vida animal. Alces, veados, ursos pardos, linces eurasianos e lobos ultrapassaram a zona de exclusão; sem seres humanos caçando-os ou arruinando seu habitat, eles prosperaram apesar dos altos níveis de radiação. Os cavalos de Przewalski, uma subespécie rara e ameaçada de extinção, foram introduzidos na zona de exclusão em 1998, e seu número está aumentando, segundo o biólogo James Beasley, da Universidade da Geórgia, que estuda a vida selvagem de Chernobyl.

habitantes na zona de exclusão
Esquerda , nos anos que se seguiram, alguns residentes – chamados samosely , ou “auto-colonizadores” – voltaram para suas casas. Outros nunca foram embora, como Yelena Muzychenko, que viveu em sua pequena aldeia bielorrussa sem eletricidade ou água corrente por 18 anos, quando fotografada em 2004. No centro, vida selvagem, incluindo raposas, lobos, linces da Eurásia, e os cavalos de Przewalski ameaçados, encontraram refúgio nas florestas radioativas da zona de exclusão. Direita, para o espanto de muitos moradores, as ruínas de Chernobyl também atraíram turistas. (Fonte: AP Photo / Sergei Grits; Usuário do Flickr Vic Harkness; AP Photo / Efrem Lukatsky)

“Há muitas evidências de que muitas dessas espécies estão aumentando em abundância depois que os humanos abandonaram a paisagem. Começou a retomar vida selvagem”, diz Beasley.

Essa abundância de flora e fauna desmente a verdade de que Chernobyl é insegura. Os animais estão lá porque os humanos não estão, de acordo com Beasley; os seres humanos têm um impacto negativo maior do que a radiação. Em trabalhos ainda não publicados, sua equipe de pesquisa descobriu que os lobos estão concentrados perto do centro da zona de exclusão, na área mais altamente contaminada.

“Sabemos que esses animais estão acumulando níveis muito altos de radiação, mas a radiação não é uniforme em toda a paisagem. Com o nosso trabalho com o lobo, estamos tentando descobrir como isso é variável ”, diz ele. “Os lobos são fortemente caçados fora da zona, então estão concentrando suas atividades dentro da zona – onde há menos influência humana, mas mais radiação.”

A zona de exclusão exala uma sensação pós-apocalíptica, segundo os visitantes. Ela serve como uma versão da Guerra Fria de Pompéia, uma cápsula do tempo de outra época.

Beasley visita uma vez por ano e atravessa florestas na fronteira da Bielorrússia. Bosques exuberantes dão lugar ao rio Pripyat, que é em grande parte não gerenciado por humanos; faltando barragens, diques e canais agrícolas, o rio é livre para serpentear.

“Parece que é como um rio deve parecer antes que a agricultura os endireite; é trançado, muito sinuoso. Tem muitas curvas, e nas curvas você vê todos os tipos de aves aquáticas diferentes, e pássaros e águias voando por aí”, diz Beasley.

Ao longo das estradas, muitas das quais são lentas devido a ondulações e buracos, Beasley percebe as casas. Grande parte da zona de exclusão além de Pripyat contém pequenas cidades agrícolas, que foram abandonadas nos dias e semanas após o acidente.

“Essas casas estão desmoronando. Ainda há pertences lá. Às vezes há fotos. Você tem esse sentimento realmente estranho; há um lembrete constante de que as vidas das pessoas foram afetadas por esse acidente”, diz ele.

A maioria dos turistas não visita essas áreas, mas há algumas exceções. Durante a viagem de Moon, o grupo visitou um morador, Ivan Ivanovich, que trabalhara como guarda de segurança na usina. Ele e sua esposa, que faleceu alguns meses antes da visita, foram uma das cerca de 100 famílias que retornaram ilegalmente à zona de exclusão após o desastre. Após a queda da União Soviética, Ivanovich recebeu permissão oficial para ficar em sua casa. Ele cultiva frutas e verduras em seu jardim, recebe uma pensão do governo e compra provisões de uma loja móvel que ocasionalmente visita. Ele está acostumado a impressionar turistas ocidentais.

“Normalmente, quando você recebe visitas, oferece-lhes algo para comer ou beber, mas percebo que ele não o fez. Ele sabia que diríamos: ‘Não, muito obrigado’”, disse Moon. “Ele disse que seus netos nunca visitaram porque seus pais não os deixaram entrar.”

A maioria dos passeios fica perto de Pripyat, onde os visitantes podem experimentar uma apresentação curada da história soviética tardia. A maioria dos edifícios já foi saqueada há muito tempo, mas, na turnê de Moon, alguns quartos do hospital foram montados para representar uma cena recentemente evacuada, com equipamentos colocados em uma sala de operações. O guia turístico de Moon usava um dosímetro de radioatividade, que ocasionalmente soava seu alarme quando o grupo se aproximava de certas áreas.

“Eu achava que a ideia era ficar longe desses pontos quentes, mas nosso guia continuava voltando à elas. Ele estava acostumado com o turismo de desastre”, lembra Moon.

Algumas empresas privadas oferecem passeios em Chernobyl, trazendo visitantes que lembram do desastre, estão estudando ou apenas tendo experimentado Chernobyl em videogames e filmes. Dylan Harris, dono de uma empresa de turismo chamada Lupin Travel, levou centenas de clientes para Chernobyl desde 2008. Ele visitou pela primeira vez em 2006 e fundou sua empresa depois de perceber que outras pessoas também gostariam de vê-lo.

“É uma experiência muito comovente. Eu já visitei várias vezes, mas acho que a única coisa que se destacou em minha primeira visita foi o silêncio completamente natural em um ambiente urbano tão grande”, diz ele. “Pripyat era uma cidade que abrigava dezenas de milhares de pessoas e, ao vê-la abandonado em decadência, faz com que seja impactante, a escala do acidente e o efeito que ele teve na vida das pessoas.”

Ele diz que os ucranianos têm sentimentos mistos sobre os turistas que visitam a área; principalmente, eles não entendem por que alguém iria querer vir. O pequeno número de opositores ao turismo diminuiu, desde que a guerra civil do país começou em 2014. “Eu acho que Chernobyl tem sido um benefício real para o turismo em geral para a Ucrânia, e isso se tornou mais evidente para as pessoas nos últimos anos desde que a economia está lutando com o conflito em curso”, diz Harris.

De fato, alguns ucranianos estão dispostos a ganhar dinheiro com a experiência de Chernobyl. Eu pedi a Chornobyl Tour, outra empresa que organiza passeios nas instalações, sobre seus clientes e práticas. Mas a empresa solicitou uma taxa de US$ 60 para uma entrevista. Disseram-me que isso seria descontado pelo equivalente a cerca de 20 dólares porque eu era jornalista, mas se a gerência da Chornobyl Tour não gostasse do que eu publiquei, teria que reembolsar o desconto. Eu me perguntava como os operadores turísticos gostariam que o lugar fosse retratado.

parque abandonado
Um parque de diversões abandonado (à esquerda) e o dilapidado Palácio da Cultura Energética (centro) em Pripyat, Ucrânia, perto do local da Usina Nuclear de Chernobyl. Pripyat foi o lar de cerca de 50.000 habitantes antes de uma explosão em abril de 1986 forçar a evacuação da cidade e a realocação de todas as pessoas dentro de um raio de 30 quilômetros da usina. No geral, quase 335.000 foram deslocados. À direita, um turista visita um prédio abandonado na zona de exclusão de Chernobyl, em 2011. (Fonte: Usuário do Flickr Clay Gilliland; Usuário do Flickr thepurpleblob; Neilberrett usuário do Flickr)

Segundo os visitantes, seria difícil retratá-lo como algo positivo. Os prédios em Pripyat estão desmoronando e, quando os visitantes passam por eles, ouvem o som de água escorrendo por toda parte, disse Amanda Thomson, residente do Reino Unido que visitou o local em outubro de 2014.

“Você evita poças e gotejamentos pelo medo de estarem infiltradas em estruturas radioativas. Os pisos são esponjosos e as árvores se esgueiram pelas janelas decadentes”, escreveu em um e-mail. “A desolação é difícil de explicar. O que a radiação pode fazer e por quanto tempo é impressionante ”.

Thomson diz que muitas vezes ela é perguntada por que ela queria fazer uma visita a Chernobyl, e ela tem dificuldade em explicar isso para seus amigos.

“Por mais sombrio que pareça, acho que me senti atraída pela aparência pós-apocalíptica do lugar. Um lugar destruído por algo que todos nos dizem que deveria ser incrível, porque a energia nuclear é incrível, certo? Ela diz que recomendaria a turnê para todos, mas ela mesmo não voltaria.

“Começou como uma aventura por meio de um lugar inóspito nuclear, a única chance de eu ver um mundo pós-apocalíptico, mas depois do primeiro dia de turnê eu estava exausta”, lembrou ela. Naquela noite, o grupo de turnê assistiu a vídeos e documentários curtos sobre a explosão e os robôs encarregados da limpeza.

“Vimos os restos de parques e playgrounds, igrejas e escolas, apartamentos literalmente abandonados. Eu estava na ponte onde os homens tinham visto as “luzes” irromperem do reator com fascinação, sem saber que eles estariam mortos em dias. Realmente mudou de uma turnê ‘legal, muitas pessoas não fazem isso’ para uma experiência muito séria que mudou minha opinião sobre energia nuclear.”

William Sumner, um oficial de operações nucleares do Exército dos EUA que trabalha na não-proliferação, também chamou a experiência de “sóbria”. Ele visitou em fevereiro de 2017.

“Ler sobre isso é uma coisa, mas andar entre as ruínas e tentar compreender que as pessoas de lá estavam sendo fortemente irradiadas enquanto assistiam ao evento é outra. Sendo que absorver toda a radiação não resulta em visões/sons/cheiros associados a outros desastres, seria difícil para os residentes entenderem o que estava acontecendo com eles”, escreveu em um e-mail.

Como Thomson, Sumner disse que recomendaria a viagem a outros, mas por diferentes razões: ele acha que uma visita pode ajudar as pessoas a entender o que deu errado e como poderia ter sido evitado.

Outra antiga instalação nuclear, esta nos Estados Unidos, oferece lições muito diferentes. O Refúgio Nacional de Vida Selvagem do Colorado oferece um vislumbre de como a era nuclear moldou a mentalidade americana e é, em muitos aspectos, parte da evolução das outras noções fundamentais do país – o destino manifesto, o assentamento da terra e o uso da terra.

O refúgio de 5.327 acres, que fica a 1820 metros de altitude a 16 quilômetros de Boulder e a 25 quilômetros de Denver, é uma pradaria cheia de alces, camundongos, veados e coiotes, assim como foi por milênios. Mas, de 1952 a 1994, era uma unidade de manufatura, processamento e armazenamento de plutônio para armas, com um registro de segurança nebuloso. Após uma inspeção da EPA e do FBI em 6 de junho de 1989, a operadora da fábrica, Rockwell International, se declarou culpada de 10 violações criminais da Lei da Água Limpa. O FBI disse ter provas de que a Rockwell despejou lixo tóxico em água potável e secretamente incinerou lixo radioativo, segundo a cobertura do processo legal no New York Times . Rockwell pagou US$ 18,5 milhões em multas.

Durante os anos 1950 e 1960, o escoamento contaminado fluía por riachos locais para o Lago Standley, um reservatório que fornecia água potável para as comunidades de Westminster, Thornton e Northglenn, e metrô de Denver. O Lago Standley está agora protegido por um reservatório a montante, mas os sedimentos do lago ainda mostram vestígios de plutônio e amerício. (As autoridades de saúde do estado dizem que as quantidades são tão pequenas que não representam risco para a saúde pública).

Enquanto a unidade estava ativa, acidentes ocasionais também expeliam partículas radioativas no ar. Um incêndio em um prédio de produção em 12 de maio de 1969 lançou uma “pequena quantidade de plutônio radioativo”, segundo um relatório do Rocky Mountain News .

pastagens e plutônio
À esquerda, as pastagens da Reserva Natural Nacional de Rocky Flats do Colorado foram fotografadas após a limpeza, em 2007. Espera-se que o refúgio seja aberto ao público em 2018, para o entusiasmo de alguns moradores locais e a consternação de outros. De 1952 a 1994, o parque era o local de uma usina de armas nucleares, cujos resíduos contaminavam a terra e as comunidades vizinhas. À direita, um trabalhador da Rocky Flats segura um “botão” de plutônio, a matéria-prima para os “gatilhos” nucleares feitos na fábrica, em 1973. (Fonte: Departamento de Energia dos EUA; Biblioteca do Congresso)

A limpeza começou em 1996 e incluiu a demolição de mais de 800 estruturas, a remoção de 21 toneladas de material para armas e o tratamento de mais de 60 milhões de litros de água. O local foi formalmente fechado em 2006, e o Serviço de Pesca e Vida Selvagem dos EUA adquiriu-o do Departamento de Energia em 2007. A agência planeja construir um centro de visitantes, estacionamentos, 32 quilômetros de trilhas e placas explicativas; deve abrir ao público em 2018.

Seria um local agradável. A área metropolitana de Denver-Boulder experimentou um crescimento populacional explosivo na última década. Os visitantes dos parques estaduais e nacionais da região encontram engarrafamentos e acampamentos e trilhas lotados. Uma pradaria aparentemente pura e cheia de animais, a poucos quilômetros da cidade, atrairia muitos turistas.

Nem todo mundo está entusiasmado com o parque. Como em Hanford, as pessoas que viviam nas comunidades próximas a Rocky Flats sofreram câncer de tireoide e doenças semelhantes, que atribuem aos materiais radioativos da unidade. Sua saúde não se beneficiou de anos de casos judiciais e litígios prolongados, diz Tiffany Hansen, co-fundador de um grupo de defesa chamado Rocky Flats Downwinders. Ela cresceu a 5 quilômetros em uma urbanização chamada Quaker Acres e começou a pesquisar sua história quando ela foi diagnosticada com tumores ovarianos benignos em 2015. Ela acredita que as autoridades estaduais e federais precisam de mais dados sobre os efeitos das águas subterrâneas e da exposição à radiação atmosférica antes de abrir a reserva para visitantes, incluindo crianças.

“Supor que, como a unidade não está mais ativa, a unidade agora é um lugar onde podemos nos divertir, trazer nossos filhos, fazer caminhadas – não consigo pensar em nada mais perturbador”, diz Hansen. “Por que é necessário usarmos esses lugares para provar uma ideia? Por que colocar o público em risco, a menos que estejamos tentando dizer que tudo está bem e que é percebido como seguro? ”

Transformar Rocky Flats em um parque pode ser uma tentativa de oferecer um futuro melhor – embora aquele que enterre seu passado. Enquanto a terra está sendo restaurada, parece que os humanos nunca fizeram nada. Onde a apresentação curada de Hanford celebra a tecnologia nuclear e a experiência mais anárquica de Chernobyl aclama o poder restaurativo da natureza diante da loucura humana, o Rocky Flats pode ser capaz de alcançar ambos. Em vez de purificar a história da unidade pela grama límpida, os visitantes devem experimentar ambos os aspectos ao mesmo tempo.

Coreia do norte
Uma imagem estática da televisão estatal norte-coreana mostra o líder do país, Kim Jong Un, com um lançador de mísseis, em maio de 2017. As tensões entre a Coréia do Norte e os Estados Unidos levaram o mundo a uma crise nuclear inigualável desde o auge da Guerra Fria. (Fonte: KRT via vídeo AP)

Sem um cálculo completo dos efeitos da era atômica sobre a terra e sobre as pessoas, o objetivo do turismo nuclear poderia ficar sem sentido. Pior ainda, desperdiça sua própria potência eminentemente grande. Esse esquecimento é especialmente verdadeiro para pessoas que atingiram a maioridade depois que a Guerra Fria se esgotou, em seguida à queda do Muro de Berlim, e depois que as crianças da escola pararam de praticar simulações de ataques aéreos escondendo-se sob suas mesas. Em 2017, as armas nucleares eram modernas; a era atômica era retrô, em tons de sépia e normalizada, como diz Linda Richards. Instantâneos em frente a barras de combustível e selfies bobas nas estações de controle demonstram que os turistas interpretam as armas nucleares de maneiras incompreensíveis para a geração da Guerra Fria.

Mas, no outono de 2017, o mundo pode estar à beira de uma catástrofe nuclear, momento em que a melhor comparação histórica pode ser a crise dos mísseis cubanos de 1962. A Coréia do Norte continua a agitar seu sabre nuclear detonando bombas subterrâneas cada vez mais poderosas e lançando foguetes. Nos Estados Unidos, o presidente Donald Trump responde à mísseis balísticos com mensagens de 140 caracteres. Millennials e Geração Z podem ter uma apreciação infeliz da perspectiva dos mais velhos.

Num futuro próximo, as relíquias da era nuclear receberão novo significado pelos turistas que as visitam? Afinal, eles não são meros locais de férias, mas mensagens gritantes do passado. O turismo nuclear apresenta uma oportunidade única. As pessoas podem vir a Hanford, Chernobyl e Rocky Flats por uma série de razões: para atiçar uma sensação nostálgica, para experimentar uma visão pós-apocalíptica, ou mesmo para cultivar e aclamar a natureza. Elas podem sair com mais. Em cada lugar, a apresentação da história tem o poder de transmutar nossa própria experiência.

Traduzido por Prof. Dr. Luís Roberto Brudna Holzle ( luisbrudna@gmail.com ) do original Greetings from Isotopia com autorização oficial dos detentores dos direitos. Revisado por: Kelly Vargas e Natanna Antunes.

Original (English) content from Science History Institute (https://www.sciencehistory.org/). Content translated with permission, but portuguese text not reviewed by the original author. Please do not distribute beyond this site without permission. [[Conteúdo original (inglês) do Science History Institute (https://www.sciencehistory.org/) . Conteúdo traduzido com permissão, mas o texto em português não foi revisado pelo autor do original. Por favor, não distribua o conteúdo sem permissão.]]

0

grupo de pessoas assistindo uma explosão nuclear
Observadores são iluminados por uma detonação atômica no Atol Enewetak durante a Operação Greenhouse em 1951. (Fonte: Corbis)

A Guerra Fria esvaeceu há muito tempo, assim como nossos medos de aniquilação nuclear global. Mas muitas armas nucleares permanecem. Daniel Gross analisa o que acontece quando algumas armas não podem ser aposentadas.

Em agosto de 1950, um comboio de aviões decolou de uma base militar da Califórnia, dois deles transportando os componentes de uma bomba nuclear. Um B-29 transportou o invólucro altamente explosivo da bomba; o outro carregava seu núcleo de urânio enriquecido. Juntos, esses componentes fariam uma bomba mais poderosa do que a que devastou Nagasaki em 1945. A bomba atravessou o Pacífico para um possível uso contra o exército comunista que invadiu a Coréia do Sul.

Comandando o transporte estava o general-de-brigada Robert F. Travis, que havia liderado dezenas de bombardeios audaciosos contra alvos alemães durante a Segunda Guerra Mundial. Travis levava uma vida mais tranquila agora que a guerra terminara. Ele estava bem adaptado a uma tarefa que, aparentemente, parecia corriqueira. Esperava-se que Travis transportasse com segurança a carcaça da bomba alguns milhares de quilômetros, certificando-se de que o pouso fosse tão suave e normal que mantivesse sua carga segura.

No momento em que o B-29 de Travis percorria a pista da Base Aérea do Exército de Fairfield-Suisun, era tarde no dia 5 de agosto, uma noite nublada e fresca no centro da Califórnia. Uma moradora da base se lembra de ter se sentado para jantar com o marido. Ela ouviu os motores zunindo no céu; um avião parecia estar perdendo altitude. Seu marido sentiu que algo não estava certo, e ele jogou-se no chão, puxando sua esposa para baixo com ele.

Durante a decolagem, uma das quatro hélices do avião estava com defeito. Uma vez no ar, o trem de pouso do avião não se retraía, e uma segunda hélice estava funcionando em uma potência parcial. Com o avião carregado de explosivos, um motor avariado, outro com problemas e as rodas presas, o terror deve ter tomado conta do cockpit.

A vida secreta do arsenal
Em 1950, as ameaças mais terríveis impostas pelas armas nucleares estavam começando a ficar claras. Um ano antes, a União Soviética detonou sua primeira bomba nuclear. Foi no início da Guerra Fria, e a superpotência estava embarcando em um impasse de décadas com os Estados Unidos – a era dos abrigos contra ataque nuclear e exercícios de abaixar e proteger-se. No final da década de 1960, os dois países teriam dezenas de milhares de armas nucleares, mais do que o suficiente para aniquilar a raça humana.

Outras ameaças eram menos evidentes para o público, no entanto, e o governo teve o cuidado de mantê-las assim. Na Base Aérea do Exército de Fairfield-Suisun, os moradores nunca foram informados de que os componentes de uma bomba nuclear estavam sendo retirados de seu quintal. Em outros lugares nos Estados Unidos, imensos laboratórios refinaram as tecnologias de armas nucleares longe dos olhos do público, enquanto os testes nucleares deixavam escapar resíduos pela atmosfera. O transporte de materiais radioativos para locais em todo o país – de minas de urânio a laboratórios e bases militares – significava que o programa nuclear dos EUA era um risco para quase todos. Um ato de sabotagem, um defeito no laboratório ou um acidente de avião poderiam ter ameaçado milhares de americanos sem que a União Soviética levantasse um dedo.

Seria fácil supor que quando a União Soviética se desfez há 25 anos, a maioria desses perigos sumisse. Alguns certamente desapareceram: não precisamos nos preocupar com esquemas militares como a “Operação Chrome Dome”, que na década de 1960 mantinha bombardeiros carregando armas nucleares nos Estados Unidos, prontos para retaliações instantâneas.

Mas os desafios de manter, transportar e salvaguardar as armas nucleares permanecem – e, de certa forma, essas tarefas só se tornaram mais difíceis. O arsenal nuclear americano está envelhecendo e os acordos internacionais impedem a construção de qualquer arma substituta. Como resultado, o estoque americano inclui milhares de armas antigas que não foram projetadas para durar, mas não podem ser legalmente detonadas para garantir que ainda funcionem.

A era da experimentação
Em agosto de 1950, o piloto do B-29 tentou guiar o avião de volta à pista, mas era quase impossível dirigir o avião. Reconhecendo a gravidade da situação, ele tentou pousar o avião o mais suavemente que pôde. Apenas alguns minutos após a decolagem, a tripulação preparou-se para um pouso forçado.

O avião atingiu o chão com força. Havia um caos no cockpit quando o avião capotou, capotou novamente e depois rasgou em dois. Um punhado de sobreviventes arrastou-se pela janela e, com a ajuda de funcionários de um prédio próximo, tentou arrastar seus companheiros com eles. Mas antes que todos pudessem ser libertados do avião, o deserto ecoou com uma explosão ouvida a 48 quilômetros de distância.

Fazia exatamente cinco anos que os Estados Unidos lançaram uma bomba atômica em Hiroshima, matando dezenas de milhares de civis japoneses. Agora, os potentes explosivos dentro do invólucro de uma bomba nuclear haviam sido destruídos em solo americano. Mais da metade da tripulação do voo morreu naquela noite. Havia apenas um pequeno conforto: pelo menos o acidente envolvera potentes explosivos em vez do núcleo de urânio enriquecido da bomba. Se um avião diferente tivesse caído naquela noite, detritos radioativos poderiam ter sido espalhados pela base, com efeitos muito mais imprevisíveis.

O brigadeiro-general Travis estava entre os mortos. Ele sobreviveu aos ataques da Luftwaffe apenas para morrer em casa. O acidente que o matou destacou novos riscos – tanto para os soldados quanto para o público – criados pelos arsenais nucleares.

Alguns meses após o acidente de avião, outra explosão fez história, em Nevada. Em 27 de janeiro de 1951, uma bomba nuclear foi jogada de um avião em um leito de lago seco no recém designado Local de Testes em Nevada. Foi a primeira bomba nuclear lançada pelo ar detonada nos Estados Unidos. As pessoas relataram ter visto a explosão a 160 quilômetros de distância.

Mais de 80 armas nucleares foram detonadas em Nevada durante os próximos 12 anos. Esses testes salientaram o poder americano, mas também geraram oposição entre uma aliança eclética de ambientalistas, cientistas e países não alinhados. Seus protestos finalmente levaram à proibição dos testes na superfície em 1963. Abaixo do solo, no entanto, quase 1.000 armas nucleares foram detonadas em Nevada. Cientificamente, essas detonações serviram como uma etapa essencial no ciclo que incluiu prototipagem, montagem e refinamento. Testes criaram a ponte entre teoria e prática.

De acordo com Stephen Younger, um ex-designer de armas, os cientistas conseguiram reduzir o tamanho e melhorar a eficiência das armas nucleares apenas porque realizaram muitos testes. “Centenas de testes nucleares foram necessários para refinar o projeto”, ele escreve em seu livro The Bomb . Afinal de contas, os requisitos de projeto de uma bomba nuclear são absurdamente rigorosos: “Ela deve ter uma probabilidade quase perfeita de funcionar quando necessário e uma probabilidade de menos de um milhão de explodir acidentalmente no acidente mais grave”.

A praticidade dos testes foi clara para os líderes militares e políticos no contexto de uma corrida armamentista nuclear global. A abordagem científica básica – um loop de feedback de pesquisa no laboratório e testes em Nevada e em outros lugares – continuou até que a União Soviética entrou em colapso. Foi só então que as coisas mudaram.

registro de uma explosão atômica
A primeira detonação com armas nucleares, codinome Trinity, ocorreu no deserto do Novo México em 16 de julho de 1945. Esta fotografia mostra a explosão 0,025 segundos após a detonação. (Fonte: Departamento de Energia dos EUA)

O fim de uma era
Em setembro de 1992, menos de um ano após a dissolução da União Soviética, os cientistas detonaram uma bomba chamada Divider no local de testes de Nevada. Ela produziu o equivalente a apenas 20 quilotons de TNT – menos de 1% do poder explosivo de muitas bombas da classe megaton. Esse foi o último teste nuclear ocorrido nos Estados Unidos.

Apesar de terem respondido as principais questões de como fazer bombas, muitos cientistas em 1992 ainda sentiam que o teste era essencial. As armas nucleares eram tecnologias militares, mas também tinham usos científicos. Os químicos adquiriram uma nova compreensão do comportamento sutil dos elementos radioativos, e os físicos de partículas descobriram novas áreas de pesquisa que despertaram interesse em colisores em larga escala. Dois elementos, o férmio e o einstênio, foram descobertos graças a explosões nucleares, enquanto as preocupações com a contaminação nuclear estimularam a pesquisa sobre padrões climáticos globais.

Na década de 1980, no entanto, os testes nucleares tenderam a se concentrar em inovações de design menores, como a portabilidade. “Todos os principais segredos sobre armas nucleares foram descobertos há muito, muito tempo”, diz Stephen Schwartz, ex-editor e diretor-executivo do Bulletin of the Atomic Scientists, em uma entrevista recente. “Agora estamos apenas mexendo nas margens.”

Em outubro de 1992, o Congresso aprovou um projeto de lei que estabelecia uma moratória curta sobre armas nucleares. Foi concebido como um prelúdio para um acordo mais amplo, o Tratado Internacional de Proibição Completa de Testes. Agora que a Guerra Fria havia terminado, enormes estoques nucleares pareciam exagerados – talvez menos um dissuasivo do que uma fonte de conflito. Em poucos anos, com líderes russos e americanos negociando reduções de armas e uma proibição total de testes, parecia que o mundo havia chegado a uma nova normalidade. Nenhum dos países construiria ou testaria armas nucleares, e cada um reduziria seus estoques para alguns milhares de armas.

O desafio, claro, era administrar a transição para um mundo com menos armas. A partir de 1989, dezenas de milhares de armas estavam preparadas e prontas em silos de mísseis, bunkers e bases militares. Mesmo que alguns defensores exigissem a destruição de todas as armas nucleares, outros – como Colin Powell, então oficial militar de maior patente dos Estados Unidos – ainda às considerava as “jóias da coroa” do arsenal americano. O arsenal estoque estava em uma encruzilhada. Como disse o historiador nuclear Richard Rhodes, “o complexo de armas nucleares pode se reinventar ou desmoronar”.

As negociações armamentistas da década de 1990 foram um triunfo da diplomacia, mas deixaram grandes questões sem resposta: o que as duas superpotências poderiam fazer com suas antigas armas nucleares? Os arsenais existentes serviriam como um dissuasor contra países não nucleares que adquirissem armas nucleares? E por quanto tempo os estoques permaneceriam seguros e operáveis ​​se os cientistas não tivessem permissão para testar armas antigas ou construir novas armas?

A última pergunta provou ser a mais irritante. Os Estados Unidos gastaram muitos bilhões de dólares tentando respondê-la, mas o país ainda está lutando com seu estoque envelhecido.

O estoque nuclear atual
Pode parecer que manter um arsenal nuclear seria mais fácil do que projetar e testar novas armas. Mas na prática não é esse o caso. As armas mais poderosas do mundo não foram projetadas para a longevidade; em vez disso, elas foram projetadas para serem substituídas por tecnologias mais avançadas no futuro. “Presumimos que nenhuma arma permaneceria no estoque por mais de dez ou vinte anos”, escreveu Younger em The Bomb.

Uma arma nuclear mediana dos EUA tem agora 29 anos. Os cientistas referem-se à sua estratégia de manutenção como “administração de estoques”. No final dos anos 90, essa abordagem foi bastante fácil. “Tantas armas estavam sendo desmanteladas em resposta às negociações de armas entre os EUA e a Rússia que as armas restantes poderiam ser mantidas em partes desmontadas”, escreve Rhodes.

No entanto, os cientistas nucleares já estavam nervosos com a perspectiva de manter as armas perpetuamente. Siegfried Hecker, diretor do Laboratório Nacional de Los Alamos, quando a União Soviética entrou em colapso, disse a Rhodes que ele e seus colegas tinham conversas urgentes sobre como redesenhar o programa de armas nucleares. “Estamos sendo solicitados a assumir a responsabilidade do berço ao túmulo por um mecanismo incrivelmente complexo”, lembrou Hecker. “E à medida que essas armas envelhecem, elas mudam e agora temos que mantê-las sem testes”.

Atualmente, a estratégia dos EUA é gastar generosamente em manutenção, substituindo regularmente componentes de armas que envelhecem mal e monitorando cada classe de armas para resolver problemas emergentes. Apenas menos de 5.000 armas permanecem no arsenal. O estoque ativo é composto exclusivamente, ou quase exclusivamente, de armas termonucleares, também conhecidas como bombas de hidrogênio, a maioria das quais foi projetada nas décadas de 1970 e 1980. Elas custam entre US$ 20 bilhões e US$ 50 bilhões por ano para armazenar, proteger e manter, dependendo de quem está estimando. Isso é pelo menos três vezes o orçamento da National Science Foundation.

avião model b 29
Bombardeiros pesados ​​Boeing B-29 Superfortress, semelhante ao avião que Robert Travis voou. (Fonte: Força aérea dos Estados Unidos)

Uma tarefa crucial é a substituição de qualquer peça que corroa ou degrade, da fiação à carcaças de metal e materiais explosivos. Por exemplo, o poderoso explosivo que detona o núcleo nuclear de uma bomba contém um plastificante, que permite que o explosivo seja moldado para direcionar a energia da bomba. Com o tempo, o plastificante evapora, deixando para trás um resíduo frágil que se parece um pouco com o plástico antigo. Para evitar tais problemas, os cientistas testam componentes individuais na ausência do explosivo “empacotamento físico” de armas nucleares. “Há um processo de renovação em curso para todas as armas atualmente no estoque ativo”, diz Schwartz. “No final do processo, as armas estão funcionalmente novas.”

Mas a manutenção exige mais que a instalação de novas peças. Muitos contratados que uma vez construíram componentes nucleares saíram do mercado. Os cientistas muitas vezes precisam fazer peças de reposição do zero. Da mesma forma, certas ferramentas precisam ser customizadas para desmantelar as bombas com sucesso. Os cientistas nucleares originalmente não projetaram armas para serem desmontadas como móveis da Ikea. Eles projetaram para ter poder de fogo em massa e uma vida útil relativamente curta.

Há uma peça final no quebra-cabeça tecnológico: garantir que cada parte atualizada funcione em conjunto com as outras. Se você trocar quase todos os componentes de uma máquina antiga, como você sabe que vai funcionar? Os cientistas tentaram responder a essa pergunta estudando cada componente mais de perto do que durante a Guerra Fria, usando supercomputadores para desenvolver seus conhecimentos sobre cada processo. Embora os modelos digitais nunca reproduzam completamente os processos físicos, eles podem ser a melhor esperança para prever e lidar com a decadência de armas nucleares antigas.

Apenas um lugar nos Estados Unidos recondiciona e desmantela armas nucleares: a Planta Pantex, perto de Amarillo, no Texas. Mas muitos locais armazenam as armas. Algumas ogivas ainda são mantidas em cima de mísseis de cruzeiro em silos remotos, em um eco das práticas da Guerra Fria. Outras são simplesmente agrupadas atrás das portas blindadas do que parecem ser iglus cobertos de terra. Somente no caso de um grande conflito, essas armas seriam acopladas a um bombardeiro ou míssil.

Dado que existe apenas um local de desmontagem, o número relativamente alto de locais de armazenamento de armas tem uma consequência inquietante: as armas nucleares precisam ser constantemente transportadas pelo país para que aquelas que precisam de inspeções ou manutenção no Pantex possam circular para dentro e para fora do arsenal. . Elas são conduzidas em caminhões de 18 rodas sem marcação e fortemente blindados. Se os componentes de uma bomba nuclear passassem por você na estrada, você provavelmente não perceberia. Seria escoltado por agentes armados, mas o próprio veículo seria simplesmente parecido com um caminhão de carga.

Além de ser o lugar onde as ogivas renascem, Pantex é o local onde os núcleos nucleares vão morrer. É fácil pensar em desarmamento como a destruição permanente de armas nucleares – mas não é como se o material radioativo concentrado pudesse ser jogado fora como lixo doméstico. Milhares de núcleos de plutônio estão em um vasto depósito da Pantex. “Esses estão todos em recipientes especiais”, diz Schwartz. “Eles parecem pequenos tambores de óleo em gaiolas.”

Não podemos ter certeza de que nosso arsenal nuclear é totalmente funcional. “Há preocupações de que, se você começar a mexer demais, você remove a arma do que você sabe que funciona”, diz Schwartz. Mas os cientistas nucleares dos EUA permanecem bastante confiantes de que podem garantir a usabilidade do arsenal. É claro que isso só será verdade se o programa nuclear dos EUA continuar a consumir bilhões de dólares federais a cada ano para continuar funcionando.

O estoque de conhecimento
Manter armas nucleares não é apenas um problema tecnológico. É também um problema de habilidades. A ciência nuclear perdeu a respeitabilidade nas últimas décadas. Os pesquisadores gastam seu tempo tentando garantir que as armas não se quebrem. Eles não estão mais tentando resolver alguns dos maiores problemas em física e química. Talvez, como resultado, o moral desses cientistas tenha diminuído e a idade média tenha subido.

Alguns de seus espaços de trabalho físico também estão em mau estado. Em 2014, o Los Angeles Times informou que a planta Pantex estava infestada de ratos, e um teto de concreto havia desmoronado recentemente em um complexo que produz materiais nucleares no Tennessee. Para aspirantes a cientistas e engenheiros, essas questões refletem o declínio do estudo das armas nucleares como uma das principais disciplinas científicas.

Mark Pierson, que lidera o programa de engenharia nuclear no Instituto Politécnico da Virgínia, vê esse desafio influenciar seus alunos. Nos anos 50, vastas áreas de territórios inexplorados atraíram toda uma geração de físicos, químicos e engenheiros para a engenharia nuclear. Em contraste, os estudantes de Pierson não têm muito interesse em trabalhar com armas nucleares. “Não há muito design novo acontecendo”, diz ele. O trabalho com armas tende a se concentrar na confiabilidade e sustentabilidade – tópicos essenciais que infelizmente não são muito prestigiosos ou que pagam bem.

O próprio Pierson trabalhou com armas nucleares por décadas: ele serviu em submarinos nucleares no final da Guerra Fria. Ele não vê um futuro muito brilhante para o programa de armas nucleares. “Eu acho que com o passar das décadas, haverá menos e menos pessoas interessadas nessa área. Particularmente, quando reduzimos nosso estoque.” Assim, como o estoque continua a envelhecer fisicamente, os Estados Unidos também perderão seu estoque de conhecimento e experiência.

Uma Herança Explosiva
O moral também caiu entre os militares responsáveis ​​pelas armas nucleares do país – talvez um sinal de que os americanos vêem as armas nucleares de maneira muito diferente do que antigamente. Em agosto de 2007, 57 anos após o acidente de avião em Fairfield-Suisun, outro avião decolou carregando uma arma nuclear. Desta vez, não houve nenhum problema com o avião em si, um bombardeiro B-52 que voava da Base Aérea Minot de Dakota do Norte para a Base Aérea de Barksdale, na Louisiana. O problema era o colapso total das regulamentações sobre armas nucleares.

Barksdale é um dos poucos centros de poder nuclear aéreo do país. Vários anos atrás, o antigo designer de armas Stephen Younger visitou a base. “Fomos levados pela fila de aeronaves que, estacionadas de ponta a ponta pelas asas, estendiam-se por mais de um quilômetro, uma exibição estratégica visível pelos satélites espiões russos”, escreve ele. Há aviões regularmente carregados com mísseis inertes para executar missões que reproduzem as condições de uma guerra nuclear. “Não se pode imaginar uma demonstração mais vívida de que as armas nucleares ainda fazem parte da equação de defesa”.

O B-52 estava programado para chegar a Minot, pegar 12 mísseis de cruzeiro não-nucleares e transferi-los para Barksdale. Era um procedimento bem simples. Os pilotos deveriam confirmar que tinham os conjuntos certos de mísseis, carregá-los nas asas do avião e confirmar que sua carga estava segura e inerte.

silo do missil peacekeeper
Força Aérea dos EUA testam o lançamento de um míssil balístico intercontinental Peacekeeper, que agora já foi descontinuado. (Fonte: Wikimedia Commons)

Não funcionou assim. Em uma impressionante sequência de erros cometidos pelo pessoal da força aérea, os mísseis errados foram selecionados. Estranhamente, as armas nucleares eram armazenadas no mesmo lugar das armas falsas – e, apesar das regulamentações que exigiam numerosas verificações na carga útil do avião, seis armas nucleares ativas foram fixadas nas asas do avião. Naquele dia, eles voaram milhares de quilômetros pelo país e foram enviados até Barksdale sem a segurança necessária.

Durante 36 horas – antes, durante e depois do voo – ninguém notou. Nem uma única pessoa – nem o piloto, nem os comandantes em terra, nem o presidente dos Estados Unidos – sabia que havia armas nucleares a bordo. Em caso de uma emergência, o bombardeiro estava até autorizado a descartar sua carga (embora a detonação acidental fosse improvável). Se alguém tivesse tentado localizar as armas durante o voo, teriam descoberto que seis mísseis nucleares haviam simplesmente desaparecido do local de armazenamento. Somente depois do pouso a tripulação do comboio de Barksdale percebeu que mísseis nucleares armados estavam presos às asas do avião.

O caso talvez seja uma boa metáfora para o desaparecimento de armas nucleares dos olhos do público. Uma investigação sobre o incidente culpou a falta de moral entre os funcionários e as regulamentações severamente enfraquecidas quando se trata de lidar com armas nucleares desde o fim da Guerra Fria.

Armas nucleares não parecem criar o tipo de medo que elas já causaram. A geração de militares agora entrando no serviço nasceu após o término da Guerra Fria. Talvez seja por isso que se tornou raro ler sobre ogivas em manchetes. Mesmo que programas nucleares como o do Irã atraiam a atenção internacional, tendemos a esquecer as milhares de armas nucleares mantidas pela última superpotência do mundo. Essas armas podem ter perdido sua enorme influência na política global – mas certamente não perderam seus imensos perigos.

Seria preciso um esforço monumental para criar um mundo sem armas nucleares. Mesmo se decidirmos desmantelar todas as armas na Terra, algumas provavelmente não seriam contabilizadas – e o material nuclear concentrado ainda poderia ser usado para construir ogivas novamente. As armas nucleares tornaram-se parte da herança humana.

No entanto, isso não perdoa nossa falha em escolher uma estratégia coerente para o futuro. Neste momento nos sentamos no meio termo entre o desarmamento gradual e a preservação permanente de nossas armas nucleares. Os custos da manutenção de armas nucleares estão aumentando, e os benefícios de um estoque nuclear parecem estar encolhendo. Nós, como cidadãos, cientistas e formuladores de políticas, precisamos fazer uma escolha. Vinte e cinco anos após o fim do jogo de xadrez global que foi a Guerra Fria, é hora de acabar com o impasse.

Texto escrito por Daniel A. Gross.

Traduzido por Prof. Dr. Luís Roberto Brudna Holzle ( luisbrudna@gmail.com ) do original ‘An Aging Army’ com autorização oficial dos detentores dos direitos. Revisado por: Kelly Vargas.

Original (English) content from Science History Institute (https://www.sciencehistory.org/). Content translated with permission, but portuguese text not reviewed by the original author. Please do not distribute beyond this site without permission. [[Conteúdo original (inglês) do Science History Institute (https://www.sciencehistory.org/) . Conteúdo traduzido com permissão, mas o texto em português não foi revisado pelo autor do original. Por favor, não distribua o conteúdo sem permissão.]]

0

usada na descoberta do elemento químico astato
Uma cobaia foi usada para descobrir o astato, o elemento mais raro do mundo.

Às vezes, a descoberta científica requer uma ferramenta incomum.

Por Sam Kean

Qual é o elemento mais raro? Parece uma pergunta direta. Uma explosão de supernova há 4,5 bilhões de anos levou à criação de nosso Sistema Solar e, com ele, todos os elementos da tabela periódica até o urânio. Mas alguns desses elementos (por exemplo, tecnécio e promécio) não possuem isótopos estáveis ​​e, dada à rapidez com que decaem, podemos estar certos, estatisticamente, de que não restarão mais átomos originais. Portanto, a resposta deve ser um empate, com todos esses elementos tendo uma abundância zero.

Essa não é toda a história, no entanto. Alguns dos elementos radioativos mais pesados, especialmente o urânio, decaem de várias maneiras, emitindo partículas diferentes ou dividindo seus núcleos em pedaços de tamanhos diferentes. E, dependendo dos detalhes dessas divisões e decaimentos, os elementos que deviam estar extintos podem reaparecer repentinamente. Eles são os celacantos da tabela periódica.

Mesmo assim, alguns elementos mal apenas são repostos. Isso é especialmente verdade com astato e frâncio, os dois candidatos ao título de mais raros do mundo. Dos dois, o frâncio é mais frágil. Se você tivesse um milhão de átomos de astato, metade deles se deterioraria em outra coisa (normalmente polônio) em cerca de 7 horas. (Em outras palavras, 7 horas é a meia-vida do astato.) Um suprimento similar de frâncio seria reduzido em 20 minutos. Então o bom senso diz que o frâncio deveria ser mais raro.

Mas o senso comum está errado. Os cientistas calculam que entre 20 e 30 onças [0,57 e 0,85 kg] de francium existem na Terra a qualquer momento. Ao mesmo tempo, há apenas uma onça [0,028 kg] de astato. Como isso é possível? Como pode um elemento 20 vezes mais frágil ser 20 vezes mais abundante? A resposta é que o caminho de decaimento do urânio para o frâncio é mais fácil de seguir do que o caminho de decaimento do urânio para o astato; o resultado líquido é que mais átomos de urânio são convertidos em frâncio. O astato é, portanto, o elemento mais raro na tabela periódica, porque é o mais difícil de produzir.

Tão difícil de produzir, de fato, que os cientistas que o criaram em 1939 não puderam detectar sua existência diretamente e tiveram que recorrer a um truque. Eles criaram um pouquinho de astato dentro de uma amostra de bismuto bombardeando o bismuto com partículas de um ciclotron. Eles então alimentaram uma cobaia com isso. O astato fica abaixo do iodo na tabela periódica, dando aos dois elementos propriedades semelhantes. E depois de algumas horas de digestão, a glândula tireoide da cobaia faminta por iodo filtrou e concentrou o astato. Permanece como o único elemento descoberto por um não humano.

Mesmo depois de coroar o astato como o elemento mais escasso, no entanto, temos que qualificar essa afirmação: é apenas o elemento natural mais raro. Além do urânio, há duas dúzias de elementos feitos pelo homem e, a menos que encontremos provas de inteligência extraterrestre algum dia, podemos estar bastante confiantes de que a maioria dos elementos além do urânio (os transurânicos) nunca existiram fora de um laboratório científico aqui na Terra.

Quão raros estamos falando? Produzir um elemento ultra-pesado pode levar uma década de trabalho – e, afinal de contas, os cientistas podem ter encontrado cinco ou seis átomos, no total, nenhum dos quais sobreviveu por mais de um segundo. (Para comparação, o registro de um esforço para reunir átomos de frâncio em um único lugar é de 10.000.) E se você está pensando que parece muito fútil, você está em boa companhia: sempre que eu dou palestras sobre a tabela periódica, a pergunta mais comum que me perguntam é por que os cientistas se importam. De que adianta fazer elementos ultra-pesados?

A maioria das pessoas que perguntam são genuinamente curiosas. De vez em quando, porém, alguém começa a tagarelar, beirando a raiva: a questão deles é realmente um desafio. Às vezes é o dinheiro que os incomoda: eles vêem a ciência como um jogo de soma zero, e cada centavo não gasto em, digamos, curas médicas é um centavo desperdiçado. Mas mesmo quando eu explico os efeitos da pesquisa (isso pode levar a novas formas de produzir isótopos médicos), eles não são acalmados. Realmente, é o desprezo intencional por praticidade que os consome. A ideia de que os cientistas possam dedicar suas vidas à criação de algo que não tem, e nunca terá, qualquer valor prático quase ofende-os.

No final, costumo sorrir e dizer que precisamos abraçar a inutilidade desses elementos, até mesmo celebrá-los. Em um cálculo utilitarista, não se pode justificar a produção de elementos ultra-pesados ​​e ultrararos – exceto para dizer que eles contribuem para a soma do conhecimento e felicidade humanos, o que não é pouca coisa. Mais do que isso, a criação deles satisfaz a necessidade humana de ir além de nossas fronteiras naturais, explorar o máximo possível de nosso pequeno espaço do universo. São necessários todos os tipos para fazer uma tabela periódica, e se alguns desses elementos são tão raros e fugazes quanto um pica-pau de bico de marfim, eles são ainda mais bonitos por isso.

Sam Kean é autor dos best-sellers “O Duelo dos Neurocirurgiões” e “A Colher Que Desaparece“.

Este texto é uma tradução autorizada oficialmente – do original ‘Tiny Productions’ publicado na revista Distillations Magazine.

Traduzido por Prof. Dr. Luís Roberto Brudna Holzle, professor na Universidade Federal do Pampa – Bagé ( luisbrudna@gmail.com ).

Original (English) content from Science History Institute (https://www.sciencehistory.org/). Content translated with permission, but portuguese text not reviewed by the original author. Please do not distribute beyond this site without permission. [[Conteúdo original (inglês) do Science History Institute (https://www.sciencehistory.org/) . Conteúdo traduzido com permissão, mas o texto em português não foi revisado pelo autor do original. Por favor, não distribua o conteúdo sem permissão.]]

0

Yasser Arafat foto original da ONU
Yasser Arafat foi assassinado com polônio?

Os envenenadores há muito fazem uso da tabela periódica de elementos para seu trabalho sujo – lembre do arsênio e mercúrio -, mas a tecnologia moderna oferece uma nova opção elementar: um veneno que desaparece.

No quadrante sudeste da tabela periódica se esconde o que eu gosto de chamar de corredor do envenenador. Chumbo, mercúrio, arsênio, cádmio – são os bandidos na química, a marca de muitos locais contaminados e a causa do recall de muitos brinquedos. E a maioria das pessoas nem ouviu falar do pior veneno ali: o tálio, um elemento tão letal que a CIA supostamente considerou assassinar Fidel Castro com um pouco de pó de tálio em suas meias. (Além de matar Castro, a CIA supostamente adorava o fato de que o elemento 81 faria sua barba cair e, assim, humilharia El Comandante.)

Ultimamente, a tecnologia moderna introduziu um novo membro no corredor do envenenador, o tóxico nuclear polônio. Em 2006, Alexander Litvinenko – um ex-espião russo que se tornara um crítico ferrenho do governo de Vladimir Putin – ficou gravemente doente depois de beber chá verde com polônio em um restaurante de sushi em Londres. Ninguém jamais foi assassinado com polônio antes: é raro na natureza e requer tecnologia avançada para manufaturar. Mas fotografias de Litvinenko em seu quarto de hospital, especialmente depois que o cabelo dele caíra, tornaram o elemento 84 mais notório em todo o mundo: tão notório que alguns toxicologistas o implicaram em outro suposto assassinato, o do político palestino Yasser Arafat.

Em outubro de 2004, durante uma longa prisão domiciliar, Arafat adoeceu uma noite depois de um jantar, vomitando e se contraindo. Ele morreu em um hospital francês um mês depois, supostamente de um derrame causado por coágulos sanguíneos generalizados. Por razões desconhecidas, o hospital ignorou a autópsia e circularam rumores de que Arafat – com 75 anos e com boa saúde até então – foi envenenado, seja por rivais políticos palestinos ou (a acusação mais comum) por autoridades israelenses.

Em 2012, a viúva de Arafat fez com que os toxicologistas testassem alguns de seus pertences, incluindo roupas íntimas, escovas de dentes, lenços para a cabeça e óculos. Eles não encontraram vestígios de venenos convencionais, mas encontraram evidências de polônio. A roupa íntima, por exemplo, mostrou níveis de polônio dezenas de vezes superiores aos níveis de fundo.

Por que usar polônio em um assassinato? É insípido e inodoro, ambos recursos úteis. E é tão raro que existem poucos testes para detectá-lo. Finalmente, e surpreendentemente, é seguro para transportar. Isso porque o polônio emite apenas partículas alfa, feixes de prótons e nêutrons que são tão volumosos que até a roupa pode pará-los. Assassinos podem, portanto, carregá-lo seguramente.

Por mais benignas que sejam do lado de fora do corpo, as partículas alfa causam danos massivos se ingeridas ou inaladas – degradando órgãos, desintegrando ossos, destruindo glóbulos brancos e embaralhando o DNA. (A longo prazo, o polônio também causa câncer, especialmente câncer de pulmão em fumantes, já que é encontrado no tabaco. O polônio se deteriora rapidamente, com uma meia-vida de 138 dias. Isso faz com que seja especialmente mortal, capaz de bombardear suas células com intensidade de uma blitzkrieg. No geral, os toxicologistas estimaram que o polônio é 250.000 vezes mais mortal que o cianeto.

Depois de encontrar evidências de polônio nas roupas de Arafat, as autoridades desenterraram seus restos mortais em 2013 e entregaram amostras de tecidos a três laboratórios. Equipes francesas e russas não encontraram evidências de polônio no corpo de Arafat. Mas uma equipe da suíça que usou placas de prata para extrair átomos de polônio do tecido encontrou evidências de envenenamento (manchas de polônio na prata). Você pode adivinhar qual resultado teve mais manchetes.

Os resultados suíços, no entanto, vêm com grandes ressalvas. A curta meia-vida do polônio significa que ele desaparece rapidamente. Já em 2004, 25 meias-vidas se passaram, deixando para trás apenas 1 / 30.000.000 da suposta dose de veneno – pouco acima dos níveis de fundo.

Como alternativa à procura do próprio polônio, os toxicologistas podem procurar por produtos de decaimento, como certos isótopos de chumbo. Mas os principais resultados da equipe suíça foram ambíguos, não oferecendo conclusões definitivas. Pior, o solo perto do túmulo de Arafat continha radônio, que se decompõe em chumbo e polônio, tornando qualquer interpretação dos resultados complicada.

Certos fatos médicos também enfraquecem a teoria do polônio. Ao contrário de Litvinenko, Arafat nunca perdeu o cabelo – um sinal clássico de envenenamento por radiação. Arafat também apresentava contagens elevadas de leucócitos, sinal de infecção, mas não de exposição à radioatividade. No geral, então, o caso do envenenamento de Arafat é duvidoso, com dois laboratórios votando não, e um laboratório votando talvez. E, infelizmente, a chance de resolver a controvérsia só vai piorar, já que qualquer polônio nos restos mortais, se é que houve algum, continua a esvair.

Este é um problema exclusivo dos novos venenos nucleares. Mesmo atrasos prolongados geralmente não prejudicam o teste de venenos elementares convencionais. Em 1991, por exemplo, o presidente dos EUA, Zachary Taylor, foi exumado 140 anos após sua morte para testar o arsênio – nenhum foi encontrado – e os cientistas daqui a 140 anos poderiam fazer o mesmo. Mas mesmo 2004 é um longo tempo para o polônio. Estamos acostumados à ciência avançando ao longo do tempo, dando-nos resultados cada vez mais precisos para determinar a verdade. Mas a natureza dos venenos radioativos garante que alguns casos arquivados provavelmente permanecerão arquivados.

Texto escrito por Sam Kean – autor best-seller de O Duelo dos Neurocirurgiões e A Colher Que Desaparece.

Tradução autorizada do original ‘Nuclear Option’ publicado na revista Distillations Magazine.

Original (English) content from Science History Institute (https://www.sciencehistory.org/). Content translated with permission, but portuguese text not reviewed by the original author. Please do not distribute beyond this site without permission. [[Conteúdo original (inglês) do Science History Institute (https://www.sciencehistory.org/) . Conteúdo traduzido com permissão, mas o texto em português não foi revisado pelo autor do original. Por favor, não distribua o conteúdo sem permissão.]]

0

sigurd hofmann mostra equipamento
Darmstadt, na Alemanha, é uma cidade com um grande significado para a tabela periódica. Foi nesta localidade, no centro de pesquisas GSI, que pelo menos seis elementos da tabela periódica foram sintetizados – bóhrio, hássio, meitnério, darmstádtio, roentgênio e copernício.

Martyn Poliakoff, do canal Periodic Videos, fez uma visita ao centro de pesquisas e mostra como esses elementos químicos foram sintetizados.

O processo para se fazer elementos super pesados basicamente consiste em acelerar elementos mais leves para forçar uma colisão e fusão destes com um alvo no qual estão localizados os elementos mais pesados para então (com sorte) conseguir a formação de um elemento super pesado.

A instabilidade dos átomos formados é tal que o processo precisa ser meticuloso e preciso, com acelerações de átomos em uma velocidade em torno de 10% da velocidade da luz. A eventual obtenção de um átomo desejado precisa ser confirmada em um detector, que por vezes só consegue detectar o processo de decomposição.

O sistema é tão sensível que existe uma curiosa história, contada por Martyn no vídeo abaixo, de uma estação de rádio que estava interferindo com a precisão do experimento em um determinado horário.

Vídeo com legenda em português. Veja como ativar a exibição.

Perceba que o elemento darmstádtio foi batizado com esse nome em homenagem à cidade e o centro de pesquisas.

Texto e legenda escritos por Prof. Dr. Luís Roberto Brudna Holzle ( luisbrudna@gmail.com ).

0

imagem da sonda new horizons da nasa
A sonda espacial New Horizons passou por Plutão, o planeta-anão, em julho deste ano (2015) após 9 anos e 8 meses de viagem. E o elemento químico plutônio faz parte dessa história.

O distanciamento cada vez maior do Sol impedia que a NASA usasse painéis solares como uma fonte de energia na manutenção dos equipamentos de comunicação. Além de significar um peso extra na sonda no transporte de uma gigante estrutura de painéis. A solução foi utilizar o isótopo radioativo plutônio-238.

A elevada radioatividade dos quase 10 quilogramas de plutônio utilizados na sonda produziam uma quantidade de calor que foi convertida em eletricidade por meio de um sistema de termopares. Tendo a equipe do projeto todo o cuidado para dimensionar o uso de energia com a constante diminuição do calor fornecido pelo sistema devido ao decaimento radioativo dos isótopos de plutônio-238.

A curiosidade é que o o elemento plutônio recebeu esse nome em homenagem ao planeta (atualmente um planeta-anão) Plutão. E foi um poético reencontro!

O Professor Sir Martyn Poliakoff, da Universidade de Nottingham na Inglaterra, revela mais detalhes no vídeo abaixo.

Vídeo com legendas em português. Ative as legendas pelo botão CC que aparecerá no vídeo.

Não é necessário ter preocupação com o uso desse tipo de material radioativo em sondas especiais. Não existe perigo de uma explosão nuclear durante o lançamento, ‘apenas’ o risco de contaminação radioativa do local da queda do foguete em caso de falha no lançamento.

Texto escrito por Prof. Dr. Luís Roberto Brudna Holzle.